

Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory

Chenxi Wang*, <u>Yifan Qiao</u>*(co-first author), Haoran Ma, Shi Liu, Yiying Zhang, Wenguang Chen, Ravi Netravali, Miryung Kim, Guoqing Harry Xu

Memory Challenge in Datacenters

Memory underutilization in datacenters

Remote Memory Systems

Efficiency: Fastswap [EuroSys'20], AIFM [OSDI'20]

Reliability: Hydra [Fast'22], Carbink [OSDI'22]

Multi-Tenancy?

Fast Network (e.g., RDMA, CXL)

Remote Memory

NIC

Remote Server

Multi-Tenant Cloud on Remote Memory

Fast Network (e.g., RDMA, CXL)

Kernel Swap Performs Poorly in Shared Settings

Experiment with four real-world cloud applications.

State of the art: Fastswap [EuroSys'20]

Snappy Google's file compression service

Memcached In memory key-value cache

Data-processing framework

Kernel Swap Performs Poorly in Shared Settings

Run each application alone with 25% of their working sets cached in local memory.

applications run alone

Kernel Swap Performs Poorly in Shared Settings

Co-run four real-world applications with 25% of their working sets cached in local memory.

Where Does The Overhead Come From?

Interference #1: Shared Swap Resources

Interference #2: Mixed Access Patterns

Interference #3: RDMA Bandwidth Competition

Competition occurs:

- among applications
- between application and prefetcher

P99 round-trip latency increases by <u>2.1x</u>

Canvas Design: Holistic Isolation

Isolation Enabled Adaptive Optimizations

Isolation Enabled Adaptive Optimizations

Isolation Enabled Adaptive Optimizations

Remote Memory Management

Remote Memory Management: Swap Out

Remote Memory Management: Swap In

Efficient When Swap is Rare

Inefficient When Swap Is Intensive

Adaptive Entry Allocator

Adaptive Entry Allocator: Swap In & Reserve

Adaptive Entry Allocator: Lock-Free Swap Out

Adaptive Entry Allocator: Intensive Swap

Adaptive Entry Allocator: Free Mappings

Evaluation

Evaluated on 6 real-world cloud applications with 11 workload combinations

State of the art: Linux cgroup on Fastswap [EuroSys'20]

- How does Canvas improve throughput for co-running applications?
- How does Canvas reduce performance variation?

Results: Improved Throughput

Co-run Snappy, Memcached, XGBoost with Spark, Cassandra, and Neo4j, respectively

Results: Reduced Performance Variation

Fix Snappy, Memcached, and XGBoost and co-run them with another Java application

- 11 workload combinations in total
- Under 25% local memory

On average 7.4x variation reduction

Conclusion

Canvas: holistic isolation + adaptive optimizations

- Isolation is necessary for real deployment of remote memory
- Isolation improves performance and QoS for shared remote memory
- Isolation enables adaptive optimizations for further performance boosts
- Canvas offers co-running applications 6.2x speedup and 7.4x variation improvement

https://github.com/uclasystem/canvas

Thank You!

